n ² m		•	e 1
Menofia University		Department: Civil Eng.	
Faculty of Engineering		Year: 2 nd Code:BES123	
Shebien El-kom	A Starter A	Subject: Eng. Mathematics(3)	
First Semester Examina	ation	Time Allowed : 3 hours	
Academic Year : 2015-2	016	Date: /1/2016	
		1. din	
Allowed Tables and Cl	narts : None		
Answer all the follow	wing questions: [100 Marks	3]	
Question 1 (35 m	arks)		
		problem <u>Graphically only</u>	
n) i ma the solution	$Min \ F = 2x_1 - x_2$	problem <u>draphicany only</u>	
2° 4	1 2		
	$S.t. \qquad x_1 + x_2 \ge 5$		
	$-x_1 + x_2 \le 1$		•
	$5x_1 + 4x_2 \le 40$	а. — м. ⁴	
	$x_1, x_2 \ge 0$		
And then show on th	e graph each of the following	ng expressions:	
i) Vertex points	<i>ii)</i> Convex set	iii) Feasible region	
iv) Hyper plane	v) Optimal solution	(10 mai	rks)
B) Use the simplex me			<i>í</i>
•,	Max $Z = 3r_z + 2r_z$	+ r	

$$\max Z = 3x_1 + 2x_2 + x_3$$

and Subjected to:

 $\begin{array}{l} 4x_1 + x_2 + x_3 = 30, \\ 2x_1 + 3x_2 + x_3 \le 60, \\ x_1 + 2x_2 + 3x_3 \le 40, \\ x_1, x_2, x_3 \ge 0 \end{array}$

(10 marks)

(5 marks)

(C) Discuss with graph each of the following expressions:

(i) Unbounded solution (ii) Infeasible solution (iii) Redundant constrained,

(iv) Multiple optima (v) Unbounded feasible region (unbounded solution),

(vi) Unbounded feasible region (bounded solution).

(D) If the sample space of a random experiment is $S = \{1, 3, 5\}$, find the algebra

and verify that it is satisfies the three conditions. (5 marks)

(E) One card is drawn at random from a box containing 40 cards numbered from 1 to 40, find the probability of each of the following:

(i) The event A = Drawing a card carrying a number divisible by 4.

(*ii*)The event B = Drawing a card carrying a number divisible by 6.

(*iii*) The event C = Drawing a card carrying a number divisible by 4 and by 6.

(*iv*)The event D = Drawing a card carrying a number divisible by 4 or by 6.

(v) The event E = Drawing a card carrying a number only divisible by 4. (5 marks)

Question 2 (65 marks)

(A) The weights in grams of 50 apples picked out at random from a consignment are as follows:

106	107	76	82	109	107	115	93	187	95	123	125	111
92	86	70	126	68	130	129	139	119	115	128	100	186
84	99	113	204	111	141	136	123	90	115	98	110	78
90	107	81	131	75	84	104	110	80	118	82		
			-	•				1				

Form the grouped frequency table by dividing the variant range intointervals of equal width, each corresponding to 20 grams, in such a way that themid-value of the first class corresponds to 70 grams.(B) Given the following frequency table(10 marks)

Class	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
Frequency	2	3	6	5	4

Calculate (i) the Arithmetic Mean (ii) the Median. (iii) the Mode (C) Given the following frequency table

Classes	10-20	20-30	30-40	40-50
Frequency	40	25	80	45

Calculate(i)The Harmonic Mean.(ii)The Geometric Mean(10 marks)(D)For the following data, 12, 17, 13, 15, 16, 8, 9, 10Calculate:(15 marks)(i)The arithmetic mean(ii)Geometric mean(iii)(iv)The Median(v)The Mode(vi)(vii)Variance,(viii)Standard Deviation(ix)

(E) For a continuous random variable, let $f(x) = \begin{cases} x+1 & -1 \le x \le 0 \\ \frac{-x}{4} + \frac{3}{4} & 1 \le x \le 3 \\ 0 & elsewhere \end{cases}$

Is f	(x) a densit	y fun	ction? If	f so find the	distributior	n function F	f(x).	(10 ma	irks)
(F)	Calculate	the	Mean	deviation,	Variance,	Standard	Deviation,	and	the
Coe	efficient of v	variat	tion for	the followin	g data:	а.		(10 ma	rks)

lass	10-20	20-30	30-40	40-50	50-60	total
f	10	20	30	25	15	100

(G) A discrete random variable x of range $\{0, 1, 2, 3\}$ and its probability distribution is given by the function $P(x) = a (1/2)^{x-1}$ for each x in the range, Find the value of a. (5 marks)

Question Number Q	1-a 02-a								
	l-a Q2-a	Q1-b	Q2-b	Q2-c	Q2-e	Q1-c	Q1-d	Q1-e	Q2-f
Skills				Q2-d			Q2-g		
	Knowledge & understanding skills Intellectual Skills							fessional	Skills