| Menofia University | Department: Civil Eng. |
| :--- | :--- | :--- |
| Faculty of Engineering | Year: 2nd Code:BES123 |
| Shebien El-kom | Subject: Eng. Mathematics(3) |
| First Semester Examination | Time Allowed : 3 hours |
| Academic Year: 2015-2016 | Date : $/ 1 / 2016$ |

Allowed Tables and Charts : None

Answer all the following questions: [100 Marks]

Question 1 (35 marks)

A) Find the solution of the Linear programming problem Graphically only

$$
\begin{array}{cc}
\text { Min } & F=2 x_{1}-x_{2} \\
\text { S.t. } & x_{1}+x_{2} \geq 5 \\
& -x_{1}+x_{2} \leq 1 \\
& 5 x_{1}^{\prime}+4 x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

And then show on the graph each of the following expressions:
i) Vertex points
ii) Convex set
iii) Feasible region
iv) Hyper plane
v) Optimal solution
(10 marks)
B) Use the simplex method to

$$
\operatorname{Max} Z=3 x_{1}+2 x_{2}+x_{3}
$$

and Subjected to:

$$
\begin{gathered}
4 x_{1}+x_{2}+x_{3}=30 \\
2 x_{1}+3 x_{2}+x_{3} \leq 60 \\
x_{1}+2 x_{2}+3 x_{3} \leq 40 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

(10 marks)
(C) Discuss with graph each of the following expressions:
(i) Unbounded solution (ii) Infeasible solution (iii) Redundant constrained, (iv) Multiple optima (v) Unbounded feasible region (unbounded solution),
(vi) Unbounded feasible region (bounded solution).
(5 marks)
(D) If the sample space of a random experiment is $S=\{1,3,5\}$, find the algebra and verify that it is satisfies the three conditions.
(5 marks)
(E) One card is drawn at random from a box containing 40 cards numbered from 1 to 40 , find the probability of each of the following:
(i) The event $\mathrm{A}=$ Drawing a card carrying a number divisible by 4.
(ii)The event $\mathrm{B}=$ Drawing a card carrying a number divisible by 6 .
(iii)The event $\mathrm{C}=$ Drawing a card carrying a number divisible by 4 and by 6 .
(iv)The event $\mathrm{D}=$ Drawing a card carrying a number divisible by 4 or by 6 .
(v) The event $\mathrm{E}=$ Drawing a card carrying a number only divisible by 4. (5 marks)

Question 2 (65 marks)

(A) The weights in grams of 50 apples picked out at random from a consignment are as follows:

106	107	76	82	109	107	115	93	187	95	123	125	111
92	86	70	126	68	130	129	139	119	115	128	100	186
84	99	113	204	111	141	136	123	90	115	98	110	78
90	107	81	131	75	84	104	110	80	118	82		

Form the grouped frequency table by dividing the variant range into intervals of equal width, each corresponding to 20 grams, in such a way that the mid-value of the first class corresponds to 70 grams.
(5 marks)
(B) Given the following frequency table
(10 marks)

Class	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Frequency	2	3	6	5	4

Calculate
(i) the Arithmetic Mean
(ii) the Median.
(iii) the Mode
(C) Given the following frequency table

Classes	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	40	25	80	45

Calculate (i) The Harmonic Mean. (ii) The Geometric Mean (10 marks)
(D) For the following data, $12,17,13,15,16,8,9,10$ Calculate:
(15 marks)
(i) The arithmetic mean
(ii) Geometric mean
(iii) Harmonic mean
(iv) The Median
(v) The Mode
(vi) The Mean Deviation
(vii) Variance, (viii) Standard Deviation (ix) The Coefficient of variation
(E) For a continuous random variable, let $f(x)= \begin{cases}x+1 & -1 \leq x \leq 0 \\ \frac{-x}{4}+\frac{3}{4} & 1 \leq x \leq 3 \\ 0 & \text { elsewhere }\end{cases}$

Is $f(x)$ a density function? If so find the distribution function $F(x)$.
(10 marks)
(F) Calculate the Mean deviation, Variance, Standard Deviation, and the Coefficient of variation for the following data:
(10 marks)

Class	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	total
f	10	20	30	25	15	100

(G) A discrete random variable x of range $\{0,1,2,3\}$ and its probability distribution is given by the function $P(x)=a(1 / 2)^{x-1}$ for each x in the range, Find the value of a.
(5 marks)

This exam measures the following ILOs											
Question Number	Q1-a	Q2-a	Q1-b	Q2-b	Q2-c	Q2-e	Q1-c		Q1-d	Q1-e	Q2-f
Skills					Q2-d				Q2-g		
	Knowledge \&understanding skills	Intellectual Skills									Professional Skills

With my best wishes Associate Prof. Dr. Islam M. Eldesoky

